Главная   Онлайн учебники   База репетиторов России   Тренажеры по математике   Подготовка к ЕГЭ 2017 онлайн



Глава 12. Преобразования

Назад Вперед
Назад Вперед

12.1. Основные понятия и свойства

В задачах, изучаемых в курсе геометрии, важное значение имеет понятие равенства фигур. Это понятие было ранее определено для простейших фигур: треугольник, окружность, многоугольник и т. д. Для более сложных фигур понятие их равенства дается на основе понятия преобразования фигур.

Пусть задана фигура F, и каждой ее точке сопоставлена (ставится в соответствие) единственная точка плоскости. Множество точек, сопоставленных точкам фигуры F, является некоторой фигурой F', вообще говоря, отличной от фигуры F (см. рис. 12.1.1).

Говорят, что фигура F' получена преобразованием фигуры F. Можно также сказать, что фигура F' является образом фигуры F при данном преобразовании. Фигуру F называют прообразом фигуры F'.

Если под F' понимается вся плоскость, можно отвлечься от понятия фигуры и говорить о преобразовании просто точек плоскости. При этом говорят, что задано преобразование на плоскости, если любой точке плоскости ставится в соответствие единственная точка плоскости. При этом если A – точка плоскости, которой сопоставлена точка A1, то A1 – образ точки A, а A – прообраз точки A1.

1
Рисунок 12.1.1.
Преобразование фигур

Два преобразования f и g называются равными (совпадают), если для любой точки X, образы ее при преобразованиях f и g совпадают, т.е. f (X) = g (X). Результирующее преобразование h двух последовательно выполненных преобразований f и g фигуры F называется композицией (или суперпозицией) преобразований  f и g и записывается h = g ○ f.

2
Рисунок 12.1.2.
Композиция преобразований

Неподвижной точкой преобразования f называется такая точка A, что   Тождественным называется преобразование, все точки которого неподвижны; оно обозначается буквой e. Преобразование называется взаимно однозначным, если разным точкам фигуры F соответствуют разные образы. Пусть f – взаимно однозначное преобразование, ставящее в соответствие точке X точку X', т. е.  Преобразование  называется обратным к f, если образом точки  является точка X – прообраз точки  при преобразовании f. Преобразование, обратное к преобразованию равно f:


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

Главная   Онлайн учебники   База репетиторов России   Тренажеры по математике   Подготовка к ЕГЭ 2017 онлайн

Бхакти Шастры
Сайт Триданди Бхакти Вигьяны Госва
bhaktishastri.ru
Смотрите также: Математика, Аннглийский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.