Глава 3. Решение уравнений и неравенств

3.1.

Назад Вперед
Назад Вперед

3.1.2.

Изучение приёмов преобразования уравнений начнём с обсуждения того, как можно разлагать на множители выражения, входящие в данное уравнение. Вообще представление уравнения f (x) = g (x) в виде
F1 (x) · F2 (x) · ... · Fn (x) = 0, (5)

где выражения Fk (x), k = 1, ..., n «проще» функций f (x) и g (x), представляет собой несомненное продвижение в решении уравнения. В самом деле, представление вида (5) позволяет сразу приравнивать множители Fk (x) нулю и решать более простые уравнения. Представление уравнения (1) в виде (5) иногда называют факторизованным видом уравнения (1) (от английского слова «factor» – множитель).

Перечислим теперь некоторые наиболее распространённые приёмы разложения многочленов, как наиболее простых алгебраических функций, на множители.

1. Вынесение общего множителя за скобку

В том случае, когда все члены многочлена имеют один и тот же общий множитель, его можно вынести за скобку, получая тем самым разложение многочлена.

Пример 1

Разложить на множители многочлен x5 – 2x3 + x2.

Показать решение

2. Применение формул сокращённого умножения

Формулы сокращения довольно эффективно применяются при разложении многочлена на множители. Полезно помнить следующие формулы:

Пример 2

Разложить на множители многочлен (x – 2)4 – (3x + 1)4.

Показать решение

3. Применение выделения полного квадрата

Без преувеличения можно сказать, что метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители. Суть его состоит в выделении полного квадрата и последующего применения формулы разности квадратов. Поясним сказанное на примере.

Пример 3

Разложить на множители многочлен x4 + 4x2 – 1.

Показать решение

4. Группировка

Метод группировки слагаемых, как правило, применяется совместно с другими методами разложения на множители и чаще всего с методом вынесения за скобки. Суть метода состоит в том, что все слагаемые данного многочлена перегруппировываются таким образом, чтобы в каждой группе, возможно после вынесения общего множителя за скобки, образовалось бы одно и то же выражение. Это выражение можно также вынести за скобки как общий для всех групп множитель.

5. Метод неопределённых коэффициентов

Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной.

Теоретической основой метода являются следующие утверждения.

Для доказательства второго утверждения вспомним, как выглядит график степенной функции с нечетной целой степенью (§ 2.2.5). Действительно, из его вида следует, что значение многочлена имеет разные знаки при x → +∞ и x → –∞. Многочлен степени n – непрерывная функция, значит, найдется хотя бы одна точка, в которой график этой функции пересечет ось Ox.

Пример 4

Разложить на множители многочлен 3x3 – x2 – 3x + 1.

Показать решение

6. Теорема о корнях многочлена

Разложение многочлена на множители иногда удаётся провести, если один из его корней угадан с помощью теоремы о рациональных корнях, доказанной в § 2.1.4. После того, как корень x = α угадан, многочлен Pn (x) представим в виде Pn (x) = (x – α) · Pn – 1 (x), где Pn – 1 (x) − многочлен степени на 1 меньше, чем Pn (x).

Пример 5

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Показать решение

7. Разложение относительно параметра

Суть этого метода легче всего понять на примере.

Пример 6

Разложить на множители многочлен x4 – 10x2 – x + 20.

Показать решение


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".