Глава 3. Перпендикулярность прямых и плоскостей

Назад Вперед
Назад Вперед

3.3. Перпендикулярность двух плоскостей

Чертеж 3.3.1

Определение 3.5. 

Пусть прямая a является линией пересечения плоскостей α и β (чертеж 3.3.1). Пусть плоскость γ, перпендикулярная прямой a, пересекает плоскости α и β по прямым m и n, которые взаимно перпендикулярны, то есть γ  α = m, γ  β = n и m  n. Такие плоскости α и β называются взаимно перпендикулярными.

Это определение не зависит от плоскости γ. Действительно, если провести другую плоскость δ, перпендикулярную прямой a, то δ || γ.

Пусть δ  α = m', δ  β = n'. По теореме о следах m' || m и n' || n. Угол, образованный прямыми m' и n', и угол, образованный прямыми m и n, равны как углы с соответственно параллельными и одинаково направленными сторонами.

Теорема 3.8. Признак перпендикулярности двух плоскостей.

Пусть a  α, a  β, тогда β  α. То есть, если плоскость β содержит прямую a, перпендикулярную плоскости α, то плоскости α и β перпендикулярны.

Доказательство

Теорема 3.9. 

Пусть α  β, α  β = a, b  a, b  β, тогда b  α. То есть прямая b, лежащая в одной из взаимно перпендикулярных плоскостей β и перпендикулярная линии пересечения a этих плоскостей, перпендикулярна и другой плоскости α.

Доказательство

Теорема 3.10. 

Если плоскости α и β взаимно перпендикулярны, и к плоскости α проведен перпендикуляр, имеющий общую точку с плоскостью β, то этот перпендикуляр лежит в плоскости β.

Теорема 3.11. 

Пусть плоскости α и β перпендикулярны плоскости γ и пересекаются по прямой a, тогда a  γ.

Доказательство

Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".