Рассмотрим произвольную точку в пространстве и некоторый вектор Очевидно, что геометрическим местом точек таких, что вектор перпендикулярен вектору будет плоскость, проходящая через точку M перпендикулярно прямой, для которой вектор является направляющим. Нашей задачей будет установить уравнение плоскости, то есть найти соотношение, которому удовлетворяют координаты точки A.
Запишем условие перпендикулярности векторов с использованием скалярного произведения:
Запишем последнее равенство в координатах:
Поскольку все наши выкладки были равносильными, то это и есть уравнение плоскости, проходящей через заданную точку. Преобразуем его к виду
Обозначая
получим
Это и есть так называемое общее уравнение плоскости.
Вектор называется нормальным вектором (или просто нормалью) для плоскости, заданной общим уравнением (1).
Нормальный вектор к плоскости перпендикулярен ей, что следует из самого вывода уравнения плоскости.
Рассмотрим плоскость 3x + 2y + z – 6 = 0. Пусть A – точка пересечения этой плоскости с осью Ox, то есть A(2; 0; 0). Точка B(0; 3; 0) – это точка пересечения данной плоскости с осью Oy, точка C(0; 0; 6) – с осью Oz (чертеж 9.7.1). Уравнение называется уравнением плоскости в отрезках на осях.
Эта плоскость пересекает оси Ox, Oy, Oz соответственно в точках A(a; 0; 0), B(0; b; 0), C(0; 0; c).
Плоскость, изображенная на чертеже 9.7.1, имеет такое уравнение в отрезках на осях: