К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии. Здесь же мы ограничимся определениями и иллюстрациями.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, c > 0, называется эллипсоидом.
Свойства эллипсоида.
Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что
Эллипсоид обладает
В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, называется эллиптическим параболоидом.
Свойства эллиптического параболоида.
Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z ≥ 0 и принимает сколь угодно большие значения.
Эллиптический параболоид обладает
В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а плоскостями, ортогональными осям Ox и Oy – парабола.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, называется гиперболическим параболоидом.
Свойства гиперболического параболоида.
Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.
Гиперболический параболоид обладает
В сечении гиперболического параболоида плоскостью, ортогональной оси координат Oz, получается гипербола, а плоскостями, ортогональными осям Ox и Oy, – парабола.
Гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, c > 0, называется однополостным гиперболоидом.
Свойства однополостного гиперболоида.
Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.
Однополостной гиперболоид обладает
В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается эллипс, а плоскостями, ортогональными осям Ox и Oy – гипербола.
Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a > 0, b > 0, c > 0, называется двуполостным гиперболоидом.
Свойства двуполостного гиперболоида.
Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что и неограничен сверху.
Двуполостный гиперболоид обладает
В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям Ox и Oy, – гипербола.
По аналогии с коническими сечениями существуют и вырожденные поверхности второго порядка. Так, уравнением второго порядка x2 = 0 описывается пара совпадающих плоскостей, уравнением x2 = 1 – пара параллельных плоскостей, уравнением x2 – y2 = 0 – пара пересекающихся плоскостей. Уравнение x2 + y2 + z2 = 0 описывает точку с координатами (0; 0; 0), уравнение x2 + y2 = 1 – круговой цилиндр, уравнение x2 + y2 = z2 – круговой конус. Существуют и другие вырожденные случаи. Полная теория поверхностей второго порядка рассматривается в курсе аналитической геометрии.