Учебник. Построения на изображениях




Построения на изображениях

В этом параграфе рассматриваются задачи построений сечений многогранников. При этом, безусловно, все построения будут проводиться на изображении многогранника и, соответственно, строиться изображение сечения. Способы задания плоскости в таких задачах могут быть различными: с помощью трех точек, точки и условия параллельности какой-либо плоскости, двух параллельных прямых и т. д. Рассмотрим одну типичную задачу.

Построить сечение пирамиды ABCD плоскостью, проходящей через точки K, L и M (рис. 4.3.1, a).

Это, наверное, самый простой вариант расположения точек, задающих секущую плоскость. При построении сечения нам не понадобится ничего, кроме аксиом и их простейших следствий. Проведем в плоскости ABD прямую KL – «след» плоскости ABD (отсюда и название метода построения сечений – метод следов). Пусть KL∩BD = P (рис. 4.3.1, b) (случай, когда KL || BD, рассматривается особо). Проводим прямую PM, получаем точку N и достраиваем сечение (рис. 4.3.1, c).

Немного труднее случай расположения точек K, L и M, показанный на рисунке 4.3.2.

Здесь точки K, L и M лежат на гранях ABD и BCD, а точка L – на ребре AC. Естественно, что сразу построить «след» плоскости сечения нельзя. Рассмотрим вспомогательную плоскость BMK. В этой плоскости уже можно построить прямую KM – «след» сечения. Пусть P – точка пересечения прямых KM и EF (рис. 4.3.2, b). Точка P лежит в плоскости ADC и в плоскости сечения. Однако в этой же плоскости лежит и точка L. Проведем прямую LP – «след» сечения в плоскости ADC, получаем точку N (рис. 4.3.2, c) и достраиваем сечение.

Рассмотрим теперь общий случай, когда все три точки, задающие сечение, лежат на плоскостях граней, но не на ребрах пирамиды (рис. 4.3.3, a, b, c).

Проведем вспомогательную плоскость DKM, пересекающую ребра AB и BC в точках E и F. Теперь построим «след» KM плоскости сечения на этой вспомогательной плоскости и найдем точку пересечения прямых KM и EF – точку P. Так как точки P и L лежат в плоскости ABC, то можно провести прямую, по которой плоскость сечения пересекает плоскость ABC. Теперь можно достроить сечение (рис. 4.3.3, b, c).

Проиллюстрируем еще один метод построения сечений, который называется методом внутреннего проектирования. Его особенность заключается в том, что с его помощью можно строить сечения, «находясь внутри» многогранника.

Проиллюстрируем его на примере рисунка 4.3.4.

Построим вспомогательную плоскость BLC и в ней отрезок LM (рис. 4.3.4, a). Построим ещё одну вспомогательную плоскость DCK. BL∩DK = E. Точка E при этом принадлежит обеим вспомогательным плоскостям (рис. 4.3.4, b). Пусть LM∩EC = F. Точка F лежит в плоскости сечения и в плоскости DCK. Теперь проведем прямую KF и найдём точку пересечения этой прямой с DC – точку N, которая тоже принадлежит сечению. Тогда четырехугольник KLNM и будет искомым сечением.

Можно поступить по-другому и начать с конца. Допустим, что искомое сечение KLNM построено (рис. 4.3.4, c).

Пусть F – точка пересечения диагоналей четырехугольника KLNM. Проведём прямую DF и обозначим через F1 точку пересечения с гранью ABC. Точка F1 одновременно принадлежит плоскостям AMD и DCK и потому совпадает с точкой пересечения прямых AM и CK, эту точку легко построить. Далее строим точку F как точку пересечения DF1 и LM. Затем находим точку N.

 

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".

 

 

 

© Физикон, 1999-2015