br>

Главная   Онлайн учебники   База репетиторов России   Тренажеры по математике   Подготовка к ЕГЭ 2017 онлайн



Глава 1. Точка и прямая

Назад Вперед
Назад Вперед

1.3. Луч

Лучом называется часть прямой, состоящая из всех точек, которые лежат по одну сторону от фиксированной точки прямой, и самой этой точки, называемой началом луча. Разные лучи одной прямой с общим началом называются дополнительными. Лучи AB и AC, изображенные на рис. 1.3.1, являются дополнительными.

Для обозначения луча будем использовать либо строчную букву латинского алфавита a, b, ..., z как и для прямой, либо символ [AB), где A – начало луча, а B – точка лежащая на луче.

Свойство луча определяется аксиомой:

Аксиома 1.5. 

На любом луче от его начальной точки можно отложить отрезок заданной длины, и только один.

На основании свойств отрезка и луча можно доказать следующее утверждение:

Если на луче отложить от начальной его точки A два отрезка AB и AC и если AB = AC, то точки B и C совпадут.

1
Рисунок 1.3.1.
Луч
2
Рисунок 1.3.2.
Взаимное расположение прямых и отрезков

Говорят, что две точки A и B, не лежащие на данной прямой, лежат по одну сторону от нее, если отрезок AB не пересекает данную прямую. Совокупность всех точек, лежащих по одну сторону от прямой, называется полуплоскостью.

После введения новых понятий (отрезок, полуплоскость) сформулируем еще одно свойство прямой:

Аксиома 1.6. 

Прямая разбивает плоскость на две полуплоскости.

Следствие 1.2. 

Можно доказать, что если точки C и D лежат в разных полуплоскостях от прямой a, то отрезок CD пересекает прямую a.

Верны следующие теоремы:

Теорема 1.1. 

Если точки O, A, B, C лежат на прямой a так, что A и B лежат по одну сторону от точки O, точки  B и C также лежат по одну сторону от точки O, тогда точки A и C лежат по одну сторону от точки O.

Доказательство

Лемма 1.1. 

Если точки OABC лежат на прямой a, причем точка A лежит между точками O и B, а точка B лежит между точками O и C, то точки AB и C лежат по одну сторону от точки O.

Доказательство

Теорема 1.2. 

Если точки O, A, B, C лежат на прямой a так, что точка A лежит между точками O и B, а точка B – между точками O и C, тогда точка B лежит между точками A и C.

Доказательство

Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

Главная   Онлайн учебники   База репетиторов России   Тренажеры по математике   Подготовка к ЕГЭ 2017 онлайн

Смотрите также: Математика, Аннглийский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.