Уравнение g (x, y) = 0 задает на координатной плоскости некоторую кривую, каждая точка M (x; y) которой удовлетворяет этому уравнению.
Некоторые кривые являются графиками функций y = f (x), что означает равносильность уравнений g (x, y) = 0 и y = f (x). К таковым, например, относится кривая, задаваемая уравнениями x + y – 1 = 0 или y – x2 = 0. Другим не соответствуют никакие функции, например,
(в данном случае каждому значению
соответствуют два значения y).
Уравнением окружности с центром в точке (a; b) и радиусом r > 0 является
(x – a)2 + (y – b)2 = r2.
Уравнение вида
f (x, y) · g (x, y) = 0
задает на плоскости объединение линий f (x, y) = 0 и g (x, y) = 0. Каждая точка этой фигуры является решением совокупности уравнений
Система уравнений с двумя переменными
Пусть задана система уравнений
Ее решением является совокупность пар чисел (xi; yi), подстановка которых в каждое из уравнений превращает его в верное равенство. Построим на координатной плоскости кривые, задаваемые уравнениями f (x, y) = 0 и g (x, y) = 0. Тогда можно сказать, что геометрически решением системы уравнений является совокупность всех точек Mi(xi; yi), в которых пересекаются кривые, задаваемые этими уравнениями.
Если кривые не пересекаются, то система уравнений решений не имеет. В этом случае говорят, что система несовместна.
Систему
геометрически можно представить как совокупность точек, в которых пересекаются три кривые f (x, y) = 0, g (x, y) = 0 и h (x, y) = 0. Если не существует точки, в которой пересекаются все три кривые, то система также несовместна.
Аналогичным образом уравнение f (x, y, z) = 0 задает поверхность в трехмерной декартовой системе координат. Геометрически решением системы уравнений
будет совокупность координат точек Mi (xi; yi; zi), в которых пересекаются поверхности, задаваемые этими уравнениями.
Так, уравнения x2 + y2 + z2 = 1, y = 0, z = 0 задают в пространстве сферу единичного радиуса с центром в начале координат и две координатные плоскости, перпендикулярные соответственно оси ординат и оси аппликат. Плоскость z = 0 пересекает сферу по окружности x2 + y2 = 1, лежащей в плоскости z = 0. Плоскость y = 0 пересекает эту окружность в двух точках с координатами M1 (–1; 0; 0) и M2 (1; 0; 0). Таким образом, решением системы уравнений
являются две тройки чисел (±1; 0; 0).
Кривая f (x, y) = 0 делит координатную плоскость на несколько областей, внутри каждой из которых функция f сохраняет знак. Для решения неравенства
f (x, y) > 0
графическим методом необходимо в каждой из таких областей взять пробную точку и вычислить ее знак, после чего отобрать области, в которых функция f принимает положительные значения. Присоединяя к полученному решению саму кривую, получим решение неравенства
f (x, y) ≥ 0.
Чтобы решить графически систему
нужно изобразить на координатной плоскости решения каждого из неравенств f (x, y) > 0, g (x, y) > 0, а затем найти их пересечение. Аналогичным образом поступают, если неравенств больше двух.