Если каждому натуральному числу n поставлено в соответствие некоторое вещественное число то говорят, что задана числовая последовательность Кратко она обозначается символом называют n-м членом последовательности. Совокупность этих чисел называют множеством значений последовательности.
Существует несколько способов задания числовых последовательностей.
Иногда последовательность задается описанием ее членов, например, последовательность, у которой xn равен n-му знаку после запятой в десятичной записи числа π = 3,14159265358979323..., задается следующим образом: x1 = 1, x2 = 4, x3 = 1, x4 = 5, x5 = 9, x6 = 2, x7 = 6, x8 = 5, x9 = 3, x10 = 5 и т. д.
Число a называется пределом последовательности {xn}, если для каждого ε > 0 существует такой номер Nε, что для всех n ≥ Nε выполняется неравенство
Интервал (a – ε; a + ε) называют ε-окрестностью точки a.
Проще говоря, число a называется пределом последовательности {xn}, если в любой ε-окрестности точки a лежат все члены последовательности {xn}, за исключением, может быть, конечного их числа. Отсюда легко заметить, что изменение конечного числа членов последовательности не влияет ни на факт существования предела, ни на величину последнего.
Так, если
Для стабилизирующейся последовательности (т. е. последовательности {xn} такой, что xn = a при n ≥ n0) в качестве Nε для любого ε можно взять n0.
Последовательность, у которой существует предел, называется сходящейся. Если никакое число не является пределом последовательности, то она называется расходящейся.
Можно показать, что числовая последовательность имеет только один предел.
Последовательность
называется возрастающей, если для любого
Последовательность
называется убывающей, если для любого
Если в этих определениях неравенство будет нестрогим, то последовательности будут называться соответственно неубывающей и невозрастающей.
Возрастающие и убывающие последовательности называют строго монотонными. Неубывающие и невозрастающие последовательности называют монотонными.