Найдём условие, при котором будут равны синусы двух углов. Пусть sin a = sin b. Тогда sin a – sin b = 0, и по известной формуле разности синусов имеем
Рассмотрим решение простейшего уравнения sin x = a. Если |a| > 1, то решений нет, если |a| ≤ 1, то в силу периодичности синуса решений будет бесконечно много. По определению обратных тригонометрических функций, одно из решений − это arcsin a. Следовательно, наше уравнение можно переписать в виде sin x = sin (arcsin a). Тогда либо x – arcsin a = 2πn, либо x + arcsin a = 2(n + 1)π, Оба эти равенства могут быть объединены в одно:
Аналогично можно показать, что формула общего решения уравнения cos x = a при |a| ≤ 1 имеет вид
Формула общего решения уравнения tg x = a при любом действительном a имеет вид
Формула общего решения уравнения ctg x = a при любом действительном a имеет вид
Рассмотренные уравнения называются простейшими тригонометрическими уравнениями.
Решите уравнение sin 2x = cos 3x.
Воспользуемся формулой приведения
получаем
Ответ.
Решите уравнение sin x – 2 cos x = 0.
Преобразуем уравнение sin x = 2 cos x. Рассмотрим те x, для которых cos x = 0. Для этих x sin x = ±1. Следовательно, эти x не являются корнями исходного уравнения, так как при их подстановке получается неверное числовое равенство 0 = ±1. Значит, cos x ≠ 0. Разделим обе части уравнения на cos x ≠ 0, имеем tg x = 2, x = arctg 2 + πn,
Ответ. x = arctg 2 + πn,
Решите уравнение sin2 x – 6 sin x cos x + 5 cos2 x = 0.
Это уравнение является квадратным относительно переменной t = tg x:
Ответ.
Только что рассмотренные уравнения называются однородными уравнениями соответственно 1-го и 2-го порядка. Вспомним определение многочлена n-ной степени, данное в § 2.1.1. Однородным многочленом n-ного порядка относительно переменных u и v называется многочлен, у которого сумма степеней переменных постоянна у всех членов.
Аналогично, уравнения au + bu = 0 и au2 + bvu + cv2 = 0 также называются однородными уравнениями 1-го и 2-го порядка. В нашем случае было u = sin x и v = cos x.
Уравнение 1-го порядка делением на v сводится к линейному относительно новой переменной Уравнения 2-го порядка делением на сводятся к квадратному относительно
Уравнения с обратными тригонометрическими функциями, как правило, удаётся решить, применяя одну и ту же тригонометрическую функцию к обеим частям данного уравнения.
Решите уравнение arccos x = arctg x.
Применим функцию косинус к обеим частям данного уравнения. Имеем
Так как область определения данного уравнения − множество
то:
Ответ.