Вернемся к определению функции, данному в § 2.2.1. Отметим, что в этом определении функция f не обязана разным элементам и множества X ставить в соответствие разные элементы множества Y.
Если Y – множество значений функции f (x) и для любого элемента существует единственный элемент такой, что f (x) = y, то говорят, что функция осуществляет взаимнооднозначное соответствие между множествами X и Y. Другими словами, соответствие называется взаимнооднозначным, если каждому элементу соответствует единственный элемент и наоборот, каждому элементу соответствует единственный элемент Функция, осуществляющая взаимнооднозначное соответствие, называется обратимой; ещё говорят, что у функции f существует обратная функция. Такая функция обозначается и каждому элементу ставит в соответствие такой элемент что f (x) = y; этот факт записывают так: Однако нам непривычна запись функции как зависимости x от y. Поэтому сделаем формальную замену переменных что соответствует отражению относительно биссектрисы первого и третьего координатных углов. Тогда получим, что − обратная функция, график которой получается из графика исходной функции y = f (x) отражением относительно биссектрисы первого и третьего координатных углов. Область определения обратной функции совпадает с областью значений самой функции: Область значений обратной функции совпадает с множеством определения самой функции:
Рассмотрим функцию f (x) = sin x для Тогда При этом область определения выбрана так, что соответствие является взаимнооднозначным. Следовательно, существует обратная функция с областью определения и областью значений Эта обратная функция называется арксинусом. Её обозначение: y = arcsin x. График функции y = arcsin x изображён на рисунке.
Аналогично, на промежутке D (f–1) = E (f) = [–1; 1] можно определить функцию, обратную cos x, c областью значений E (f–1) = D (f) = [0; π] Эта обратная функция называется арккосинусом. Её обозначение: y = arccos x. График функции y = arccos x изображён на рисунке.
Рассмотрим функцию f (x) = tg x для Тогда При этом область определения выбрана так, что соответствие является взаимнооднозначным. Следовательно, существует обратная функция с областью определения и областью значений Эта обратная функция называется арктангенсом. Её обозначение y = arctg x. График функции y = arctg x изображён на рисунке.
Для построения арккотангенса выберем промежуток x ∈ (0; π). Тогда Построим обратную функцию с областью определения и областью значений Эта обратная функция называется арккотангенсом. Её обозначение y = arcctg x. График функции y = arcctg x изображён на рисунке.
Итак, запись b = arcsin a обозначает, что и sin b = a. Аналогичные соотношения справедливы и для остальных обратных тригонометрических функций.
Докажите тождество
Пусть
пусть также
Следовательно, требуется доказать неравенство
Перенесём z в правую часть и возьмём синус от обеих частей получившегося равенства:
Но sin y = x и cos z = x, значит, наше равенство принимает вид x = x. Однако для того, чтобы доказать нужное нам тождество, мы должны обосновать возможность перехода от верного равенства x = x к исходному. В самом деле, переход от равенства sin y = cos z к равенству вообще говоря, не является равносильным преобразованием. Но у нас есть ограничения на y и z в виде неравенств а для таких y и z равенство sin y = cos z возможно только при Следовательно, и наконец что и требовалось доказать.
Найти соотношение между A (x) = arcsin (cos (arcsin x)) и B (x) = arccos (sin (arccos x)).
Обозначим через y переменную, для которой выполняется равенство:
тогда cos y = cos (arcsin x). Значит,
Вычислим sin (arccos x) = sin z, где
Значит,
Итак, и В предыдущем примере мы установили, что сумма арксинуса и арккосинуса одного и того же аргумента равна Окончательно,
Ответ.