Глава 5. Тела вращения

Назад Вперед
Назад Вперед

5.7. Поверхности второго порядка

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии. Здесь же мы ограничимся определениями и иллюстрациями.

Определение 5.12. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением  a > 0, b > 0, c > 0, называется эллипсоидом.

1
Рисунок 5.7.1

Свойства эллипсоида.

  1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что   

  2. Эллипсоид обладает

  3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс.

2
Рисунок 5.7.2

Определение 5.13. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением  a > 0, b > 0, называется эллиптическим параболоидом.

Свойства эллиптического параболоида.

  1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z ≥ 0 и принимает сколь угодно большие значения.

  2. Эллиптический параболоид обладает

  3. В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а плоскостями, ортогональными осям Ox и Oyпарабола.

Определение 5.14. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением  a > 0, b > 0, называется гиперболическим параболоидом.

3
Рисунок 5.7.3

Свойства гиперболического параболоида.

  1. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

  2. Гиперболический параболоид обладает

  3. В сечении гиперболического параболоида плоскостью, ортогональной оси координат Oz, получается гипербола, а плоскостями, ортогональными осям Ox и Oy, – парабола.

  4. Гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.

Определение 5.15. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением  a > 0, b > 0, c > 0, называется однополостным гиперболоидом.

4
Рисунок 5.7.4

Свойства однополостного гиперболоида.

  1. Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

  2. Однополостной гиперболоид обладает

  3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается эллипс, а плоскостями, ортогональными осям Ox и Oy – гипербола.

Определение 5.16. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением  a > 0, b > 0, c > 0, называется двуполостным гиперболоидом.

5
Рисунок 5.7.5

Свойства двуполостного гиперболоида.

  1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что и неограничен сверху.

  2. Двуполостный гиперболоид обладает

  3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям Ox и Oy, – гипербола.

 

По аналогии с коническими сечениями существуют и вырожденные поверхности второго порядка. Так, уравнением второго порядка x2 = 0 описывается пара совпадающих плоскостей, уравнением x2 = 1 – пара параллельных плоскостей, уравнением x2 – y2 = 0 – пара пересекающихся плоскостей. Уравнение x2 + y2 + z2 = 0 описывает точку с координатами (0; 0; 0), уравнение x2 + y2 = 1 – круговой цилиндр, уравнение x2 + y2 = z2 – круговой конус. Существуют и другие вырожденные случаи. Полная теория поверхностей второго порядка рассматривается в курсе аналитической геометрии.


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".