Глава 1. Теоретические сведения о функциях

1.3. Числовые функции

Назад Вперед
Назад Вперед

1.3.6. Предел функции

Понятие предела функции является одним из самых важных в математике. Дадим два определения этому понятию.

Определение предела по Коши. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для каждого ε > 0 существует δ > 0 такое, что для всех x, удовлетворяющих условию |x – a| < δ, x ≠ a, выполняется неравенство |f (x) – A| < ε.

Определение предела по Гейне. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для любой последовательности такой, что сходящейся к числу a, соответствующая последовательность значений функции сходится к числу A.

График 1.3.6.1.
Предел функции y = x2 при x → 2.
График 1.3.6.2.
Предел функции  при x → 0.

Если A – предел функции в точке a, то пишут, что

Определения предела функции по Коши и по Гейне эквивалентны.

График 1.3.6.3.
Предел функции y = {x (x ≠ 0); 1 (x = 0)} при x → 0 равен 0.

Предел функции в точке a = 0 равен 0: Предел функции в точке a = 0 также равен 0, хотя эта функция не существует в этой точке (ее знаменатель обращается в нуль). Предел функции в точке a = 0 равен 0, хотя значение функции в этой точке f (0) = 1.

Если функция f (x) имеет предел в точке a, то этот предел единственный.

Число A1 называется пределом функции f (x) слева в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех выполняется неравенство  

Число A2 называется пределом функции f (x) справа в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех выполняется неравенство  

Предел слева обозначается предел справа – Эти пределы характеризуют поведение функции слева и справа от точки a. Их часто называют односторонними пределами. В обозначении односторонних пределов при x → 0 обычно опускают первый нуль: и . Так, для функции  

Если для каждого ε > 0 существует такая δ-окрестность точки a, что для всех x, удовлетворяющих условию |x – a| < δ, x ≠ a, выполняется неравенство |f (x)| > ε, то говорят, что функция f (x) имеет в точке a бесконечный предел:

Так, функция имеет в точке x = 0 бесконечный предел Часто различают пределы, равные +∞ и –∞. Так,

Если для каждого ε > 0 существует такое δ > 0, что для любого x > δ выполняется неравенство |f (x) – A| < ε, то говорят, что предел функции f (x) при x, стремящемся к плюс бесконечности, равен A:

Аналогично формулируется определение предела при x, стремящемся к минус бесконечности: В качестве примера приведем функцию которая стремится на бесконечности к нулю:

Наконец, запись означает, что для любого ε > 0 существует такое δ > 0, что для любого x > δ выполняется неравенство f (x) > ε. Запись означает, что для любого ε > 0 существует такое δ > 0, что для любого x > δ выполняется неравенство f (x) < –ε. Запись означает, что для любого ε > 0 существует такое δ > 0, что для любого x < –δ выполняется неравенство f (x) < –ε.

Если функция f (x) имеет конечный предел в точке a, то существует окрестность точки a, в которой функция f ограничена ( возможно, что в самой точке a функция не определена). При этом, если A ≠ 0, то найдется окрестность точки a, в которой (быть может, за исключением самой точки a) значения функции f имеют тот же знак, что и число A.

Если существует такое δ > 0, что для всех x, принадлежащих δ-окрестности точки a, выполняются неравенства
g (x) ≤ f (x) ≤ h (x),
и если
,
то существует

Если существует такое δ > 0, что для всех x, принадлежащих δ-окрестности точки a, справедливо неравенство
f (x) < g (x),
и если   то A ≤ B.

Если функции f (x) и g (x) имеют конечные пределы в точке a, причем   то

Из существования пределов f (x) в точке a и g (y) в точке f (a) следует существование предела сложной функции g (f (x)) в точке a.

Для вычисления пределов часто используют так называемые замечательные пределы:

Доказательство

Другие важные пределы (при a > 0, a ≠ 1):
следуют из замечательных пределов и свойства предела обратной функции.

Функция α (x) называется бесконечно малой при x → a (здесь a – конечное число или ∞), если Функция x = 0 является бесконечно малой функцией в каждой точке. Примерами бесконечно малых (на бесконечности) функций являются зависимость силы тяжести от расстояния до притягивающего центра или зависимость скорости движения по параболической орбите от времени.

Если в некоторой окрестности a определены функции f (x), g (x), h (x) такие, что f (x) = g (xh (x), , то функции f (x) и g (x) называются эквивалентными при x → a:
f (x) ~ g (x).

Так, функции  и эквивалентны при x → 0, так как а второй множитель стремится к 1 при x → 0. Другие примеры эквивалентных функций при x → 0:

sin x ~ x

tg x ~ x

arcsin x ~ x

arctg x ~ x

ex – 1 ~ x

ln (1 + x) ~ x

(1 + x)α – 1 ~ α x.

При вычислении пределов функций можно использовать понятие эквивалентности.


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".