Глава 1. Арифметика

1.1.

Назад Вперед
Назад Вперед

1.1.1.

Понятия «число» и «операция» не так просты, как это может показаться с первого взгляда. Почему, пользуясь одними и теми же числами, мы можем считать камушки и звезды? Это позволяет нам думать, что, сколько бы ни было объектов, мы всегда сможем их пересчитать, и операции сложения, умножения будут также применимы к ним. Подобные вопросы ставились и древними греками, и в наше время.

В этом курсе мы будем исходить из того, что умение считать и различать разные количества предметов – врожденные способности человека. Возьмем в руки камушки, как это делали пифагорейцы, будем прибавлять их по одному, называть последовательно каждое количество своим именем и таким «наглядным» способом определим сразу два основных для алгебры понятия – число и операцию увеличения на единицу. Повторяя эту процедуру и предполагая, что ничто не мешает нам делать это бесконечно, мы сможем определить сложение и умножение на бесконечном множестве натуральных чисел.

 

Натуральными называются числа, которые используются для счёта предметов или обозначения номера предмета в ряду однородных предметов: 1, 2, 3, 4, 5, …

 

При сложении и умножении натуральных чисел снова получается натуральное число.

Пусть p и q – натуральные числа. Тогда:

 

Приведем без доказательства законы, которые впоследствии позволят определить операции сложения и умножения не только для чисел, но и для гораздо более сложных объектов, таких, как множества, функции, группы и так далее.

Сложение и умножение натуральных чисел обладают следующими свойствами:

  1. a + b = b + a (переместительный закон сложения).
  2. (a + b) + c = a + (b + c) (сочетательный закон сложения).
  3. ab = ba (переместительный закон умножения).
  4. (ab)c = a(bc) (сочетательный закон умножения).
  5. a(b + c) = ab + ac (распределительный закон умножения относительно сложения).

 

К сложению и умножению можно добавить обратные операции – вычитание и деление.

Если pq и k – натуральные числа, то при натуральном k = p – q говорят, что

Если же натуральное k = p : q, то говорят, что

При этом число p называется кратным числа q, а число qделителем числа p. Другими словами, если число p кратно числу q, то существует такое число k, что k = p : q.

Вычитание и деление натуральных чисел, вообще говоря, не всегда приводит опять к натуральному числу: 15 – 3 = 12 – натуральное число, но 4 – 9 = –5 – не натуральное число. 25 : 5 = 5 – натуральное число, 22 : 7 – не натуральное число.

Увы, нам придется вводить ограничения на применимость новых операций, так как в некоторых случаях они выводят нас за рамки натуральных чисел, а другие числа мы еще не определили. Так что будем пока считать, что нельзя вычитать большее из меньшего, и делить на число, которое не укладывается нацело в делимом. Но с этими ограничениями мы можем уже записывать числовые выражения.

 

 

Числовым называется выражение, составленное из чисел с помощью знаков арифметических действий. Если в числовом выражении выполнить все указанные действия, то получится число, которое называется значением данного выражения.

Для того, чтобы определить порядок действий в выражении, введем еще один, парный, знак – скобки.

Приоритет арифметических операций в числовом выражении следующий: вначале выполняются действия в скобках; внутри скобок вначале выполняют умножение и деление, после чего сложение и вычитание.

Пример 1

В каком порядке нужно выполнять действия в выражении

Показать решение

Пример 2

В каком порядке нужно выполнять действия в выражении

Показать решение

 

Еще один простой вопрос – можем ли мы наше множество упорядочить? Существует ли последовательность действий, выполнив которую, мы можем перечислить все элементы множества? Это было бы равнозначно введению какого-то однозначного отношения между элементами. Самым простым упорядочивающим отношением служит понятие «больше», и, чтобы ввести его, расположим натуральные числа на числовой прямой.

1
Рисунок 1.1.1.1.
Координатная прямая

Нарисуем горизонтальную прямую x, выберем на ней точку O и назовём её началом отсчёта, выберем на этой прямой направление (обычно слева направо) и единичный отрезок (то есть отрезок, длина которого по определению равна 1) (см. рисунок). Говорят, что задана координатная прямая. Каждому натуральному числу можно поставить в соответствие одну и только одну точку. Именно, если, например, задано число 5, отложим от точки O вправо выбранный единичный отрезок 5 раз. Точно так же можно поступить с любым натуральным числом. Если некоторая точка A соответствует некоторому числу a, то говорят, что число a является координатой точки A. В этом случае пишут A (a).

Ясно, что число 0 (нуль) – координата точки O – меньше любого натурального числа.

Для любых двух натуральных различных чисел a и b справедливо одно и только одно утверждение: a < b, a > b или a = b. Знаки < и > называются знаками строгих неравенств, знаки ≤ и ≥ – знаками нестрогих неравенств. Запись a ≤ b означает, что верно одно из двух утверждений: либо a < b, либо a = b. Неравенства a < b и c < d называют неравенствами одного знака; неравенства a < b и c > d называют неравенствами разных знаков.


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий 

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".