Учебник. Понятие о неравенстве




Понятие о неравенстве

Пусть функции f (x) и g (x) заданы на некоторых числовых множествах X1 и X2. Неравенством с одной неизвестной называется отношение вида f (x) < g (x).

(Вместо знака < могут стоять знаки >, ≤, ≥.)

Областью допустимых значений неравенства (ОДЗ) называется множество значений переменной, на котором обе части неравенства одновременно определены (имеют смысл). Таким образом, ОДЗ= X 1 X 2 , то есть пересечение множеств X 1 и X 2 .

Число a называется решением неравенства (1), если при подстановке его вместо переменной x получаем верное числовое неравенство f (a) < g (a).

Понятно, что a, являясь решением неравенства (1), может лежать только в ОДЗ.

Поскольку проверить решение в неравенствах не так просто, как в уравнениях, искать решения лучше сразу в ОДЗ.

Решить неравенство − это означает найти все его решения или доказать, что их нет. Совокупность всех решений неравенства называется множеством решений неравенства.

 

Два неравенства, f (x) < g (x) и f1 (x) < g1 (x),

называются равносильными на множестве X, если на этом множестве неравенства имеют одни и те же решения, то есть, если каждое решение неравенства (2) является решением неравенства (3), и наоборот, каждое решение второго неравенства является решением первого. Два неравенства, не имеющие решений на каком-либо множестве, также считаются равносильными на этом множестве.

Из приведённого определения следует, что если неравенство f1 (x) < g1 (x) окажется более простым, чем равносильное ему неравенство f (x) < g (x), то и решать нужно именно его, так как решения у него те же. Остаётся единственная проблема: как от неравенства (2) перейти к равносильному ему неравенству (3) или, как говорят, осуществить равносильный переход? Сформулируем несколько общих правил, позволяющих это делать.

Правило 1. Если функции f (x), g (x) и h (x) определены на множестве X, то неравенства f (x) > g (x) и f (x) + h (x) > g (x) + h (x) равносильны на этом множестве.

Правило 2. Если h (x) > 0 на множестве X, то неравенства f(x)>g(x)f(x) h(x)>g(x) h(x) равносильны на этом множестве.

Вывод. Обе части неравенства можно умножать на положительную функцию, не нарушая равносильности.

Правило 3. Если h (x) < 0 на множестве X, то неравенства f(x)>g(x)f(x) h(x)<g(x) h(x) равносильны на этом множестве.

Вывод. Обе части неравенства можно умножать на отрицательную функцию, не нарушая равносильности, меняя при этом знак неравенства на противоположный.

Правило 4. Если f (x) ≥ 0, g (x) ≥ 0 на множестве X, то неравенства f ( x ) >g ( x ) f 2  ( x ) > g 2  ( x ) равносильны на этом множестве.

Вывод. Если обе части неравенства f ( x ) >g ( x ) неотрицательны, то возведение в квадрат неравенства не нарушает равносильности. Заметим, что возводить неравенство в квадрат можно, только если обе части этого неравенства неотрицательны. Если хотя бы одна из частей неравенства отрицательна, возведение неравенства в квадрат, вообще говоря, не является равносильным преобразованием. Яснее всего это видно на примере числовых неравенств. Так, если верное неравенство −1 > −4 возвести в квадрат, то получится неверное неравенство 1 > 16. Такое противоречие вызвано именно тем, что части первоначального неравенства не были неотрицательными.

 

Равносильны ли неравенства x 2 +6x+9 <5 и x+3<5 ?

Неравенства неравносильны. Действительно, x 2 +6x+9 <5 ( x+3 ) 2 >5 | x+3 |<5 .

Неравенство x + 3 < 5 будет верным и тогда, когда x + 3 < –5, например, при x = –100. Первое же неравенство при x = –100 неверно.

Ответ. Нет.

Равносильны ли неравенства x +x> x -1 и x>-1 ?

Неравенства неравносильны. В самом деле, x +x> x -1 { x>-1, x0; x0.

Значит, множеством решений первого неравенства являются область x ≥ 0, а второго x > –1. Поскольку это разные множества, то неравенства неравносильны.

Ответ. Нет.





 

© Физикон, 1999-2015