Учебник. Тригонометрическая форма записи комплексных чисел




Тригонометрическая форма записи комплексных чисел

Та запись комплексного числа, которую мы использовали до сих пор, называется алгебраической формой записи комплексного числа. Часто бывает удобна немного другая форма записи комплексного числа. Пусть z=a+bi, r=| z |= a 2 + b 2 и φ = arg z. Тогда по определению аргумента имеем: { cos φ= a a 2 + b 2 ,  sin φ= b a 2 + b 2 ;  { cos φ= a r ,  sin φ= b r ;  { a=r cos φ,  b=r sin φ. Отсюда получается z = a + bi = r(cos φ + i sin φ). Такая форма называется тригонометрической формой записи комплексного числа. Как видно, для того, чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической форме, нужно найти его модуль и один из аргументов.

Записать число z=1- 3 i в тригонометрической форме.

Найдём модуль этого числа: | z |= 1 2 + ( 3 ) 2 = 1+3 =2. Аргумент данного числа находится из системы { cos φ= 1 2 , sin φ=- 3 2 . Значит, один из аргументов числа z=1- 3 i равен - π 3 . Получаем: z=2( cos ( - π 3 ) +isin ( - π 3 ) ) =2( cos ( π 3 ) -isin ( π 3 ) ) .

Ответ.  2( cos ( π 3 ) -isin ( π 3 ) ) .

Арифметические действия над комплексными числами, записанными в тригонометрической форме, производятся следующим образом. Пусть z1 = r1(cos φ1 + i sin φ1) и z2 = r2(cos φ2 + i sin φ2). Имеем: z 1 z 2 = r 1 ( cos  φ 1 +i sin  φ 1 ) ċ r 2 ( cos  φ 2 +i sin  φ 2 ) = = r 1 r 2 ( cos  φ 1   cos  φ 2 -sin  φ 1   sin  φ 2 +i ( sin  φ 1   cos  φ 2 +cos  φ 1   sin  φ 2 ) ) = = r 1 r 2 ( cos ( φ 1 + φ 2 ) +i sin ( φ 1 + φ 2 ) ) . z 1 z 2 = r 1 ( cos  φ 1 +i sin  φ 1 ) r 2 ( cos  φ 2 +i sin  φ 2 ) = r 1 ( cos  φ 1 +i sin  φ 1 ) ċ r 2 ( cos  φ 2 -i sin  φ 2 ) r 2 ( cos  φ 2 +i sin  φ 2 ) ċ r 2 ( cos  φ 2 -i sin  φ 2 ) = = r 1 r 2 ( cos  φ 1 +i sin  φ 1 ) ċ( cos  φ 2 -i sin  φ 2 ) = r 1 r 2 ( cos ( φ 1 - φ 2 ) +i sin ( φ 1 - φ 2 ) ) . Видно, что в тригонометрической форме операции умножения и деления производятся особенно просто: для того, чтобы перемножить (разделить) два комплексных числа, нужно перемножить (разделить) их модули и сложить (вычесть) их аргументы.

Отсюда следует, что для того чтобы перемножить n комплексных чисел, нужно перемножить их модули и сложить аргументы: если φ1, φ2, ..., φn – аргументы чисел z1, z2, ..., zn, то arg( z 1 z 2 ... z n ) = φ 1 + φ 2 +...+ φ n , | z 1 z 2 ... z n |=| z 1 || z 2 |...| z n |.

В частности, если все эти числа равны между собой, то получим формулу, позволяющую возводить комплексное число в любую натуральную степень.

Первая формула Муавра: z n = ( r( cos φ+i sin φ ) ) n = r n ( cos nφ+i sin nφ ) .

Вычислить z 4 , если z=1- 3 i.

Как было найдено в предыдущем примере, данное число в тригонометрической форме имеет вид z=2( cos ( π 3 ) -i sin ( π 3 ) ) . По первой формуле Муавра получаем: z 4 = 2 4 ( cos ( π 3 ) -i sin ( π 3 ) ) 4 = 2 4 ( cos ( 4π 3 ) -i sin ( 4π 3 ) ) = = 2 4 ( -cos ( π 3 ) +i sin ( π 3 ) ) = 2 4 ( - 1 2 +i 3 2 ) = 2 3 ( 3 i-1 ) =8( 3 i-1 ) . Ответ.  8( 3 i-1 ) .

Число z называется корнем степени  n, n , из комплексного числа w, если z n =w. Корень степени n, n , обозначается z= w n . Пусть теперь число w фиксировано. Найдём z из уравнения z n =w.

Если w = 0, то у уравнения z n =0 существует единственное решение z = 0.

Если w ≠ 0, то положим, что нам известно тригонометрическое представление числа w = r0(cos φ0 + i sin φ0), и будем искать число z также в тригонометрической форме: z = r(cos φ + i sin φ). Из определения аргумента и геометрической интерпретации комплексных чисел следует, что два комплексных числа, записанных в тригонометрической форме, равны тогда и только тогда, когда равны их модули, а аргументы отличаются на угол, кратный 2π. Имеем: r n = r 0 , nφ= φ 0 +2πk,  k, откуда получается: r= r 0 n , φ= φ 0 n + 2πk n ,  k. Итак, все решения уравнения z n =w задаются формулой z k = r 0 n ( cos ( φ 0 n + 2πk n ) +i sin ( φ 0 n + 2πk n ) ) . Заметим, что если в эту формулу подставлять натуральные числа k, то при k = 0, 1, ..., n мы будем получать разные комплексные числа, а при k = n имеем: z n = r 0 n ( cos ( φ 0 n + 2πn n ) +i sin ( φ 0 n + 2πn n ) ) = r 0 n ( cos ( φ 0 n ) +i sin ( φ 0 n ) ) = z 0 . Значит, и в дальнейшем значения корней будут повторяться. Следовательно, существует ровно n корней уравнения z n =w , и все они задаются одной формулой.

Вторая формула Муавра: z k = r 0 n ( cos ( φ 0 n + 2πk n ) +i sin ( φ 0 n + 2πk n ) ) ,  k=0, 1,  ..., n-1.

Найти -1 3 .

Представим число –1 в тригонометрической форме: -1=1( cos π+i sin π ) . По второй формуле Муавра получаем: z k = -1 3 =1ċ( cos ( π 3 + 2πk 3 ) +i sin ( π 3 + 2πk 3 ) ) ,  k=0, 1,  2. Получаем последовательно: z 0 =cos ( π 3 ) +i sin ( π 3 ) = 1 2 +i 3 2 = 1+i 3 2 z 1 =cos ( π 3 + 2π 3 ) +i sin ( π 3 + 2π 3 ) =cos π+i sin π=-1+0=-1;  z 2 =cos ( π 3 + 4π 3 ) +i sin ( π 3 + 4π 3 ) =cos ( 5π 3 ) +i sin ( 5π 3 ) = 1 2 -i 3 2 = 1-i 3 2 . Ответ.  1±i 3 2 ,  -1 .





 

© Физикон, 1999-2015