Главная   Онлайн учебники   База репетиторов России   Тренажеры по математике   Подготовка к ЕГЭ 2017 онлайн



Глава 3. Решение уравнений и неравенств

3.2.

Назад Вперед
Назад Вперед

3.2.1.

 

Пусть функции f (x) и g (x) заданы на некоторых числовых множествах X1 и X2. Неравенством с одной неизвестной называется отношение вида
f (x) < g (x). (1)

(Вместо знака < могут стоять знаки >, ≤, ≥.)

 

Областью допустимых значений неравенства (ОДЗ) называется множество значений переменной, на котором обе части неравенства одновременно определены (имеют смысл). Таким образом, то есть пересечение множеств и

 

Число a называется решением неравенства (1), если при подстановке его вместо переменной x получаем верное числовое неравенство f (a) < g (a).

Понятно, что a, являясь решением неравенства (1), может лежать только в ОДЗ.

Поскольку проверить решение в неравенствах не так просто, как в уравнениях, искать решения лучше сразу в ОДЗ.

Решить неравенство − это означает найти все его решения или доказать, что их нет. Совокупность всех решений неравенства называется множеством решений неравенства.

 

Два неравенства,
f (x) < g (x) (2)

и

f1 (x) < g1 (x), (3)

называются равносильными на множестве X, если на этом множестве неравенства имеют одни и те же решения, то есть, если каждое решение неравенства (2) является решением неравенства (3), и наоборот, каждое решение второго неравенства является решением первого. Два неравенства, не имеющие решений на каком-либо множестве, также считаются равносильными на этом множестве.

Из приведённого определения следует, что если неравенство f1 (x) < g1 (x) окажется более простым, чем равносильное ему неравенство f (x) < g (x), то и решать нужно именно его, так как решения у него те же. Остаётся единственная проблема: как от неравенства (2) перейти к равносильному ему неравенству (3) или, как говорят, осуществить равносильный переход? Сформулируем несколько общих правил, позволяющих это делать.

Правило 1. Если функции f (x), g (x)  и  h (x) определены на множестве X, то неравенства
f (x) > g (x) и f (x) + h (x) > g (x) + h (x)
равносильны на этом множестве.

Правило 2. Если h (x) > 0 на множестве X, то неравенства
равносильны на этом множестве.

Вывод. Обе части неравенства можно умножать на положительную функцию, не нарушая равносильности.

Правило 3. Если h (x) < 0 на множестве X, то неравенства
равносильны на этом множестве.

Вывод. Обе части неравенства можно умножать на отрицательную функцию, не нарушая равносильности, меняя при этом знак неравенства на противоположный.

Правило 4. Если f (x) ≥ 0, g (x) ≥ 0 на множестве X, то неравенства
равносильны на этом множестве.

Вывод. Если обе части неравенства неотрицательны, то возведение в квадрат неравенства не нарушает равносильности. Заметим, что возводить неравенство в квадрат можно, только если обе части этого неравенства неотрицательны. Если хотя бы одна из частей неравенства отрицательна, возведение неравенства в квадрат, вообще говоря, не является равносильным преобразованием. Яснее всего это видно на примере числовых неравенств. Так, если верное неравенство −1 > −4 возвести в квадрат, то получится неверное неравенство 1 > 16. Такое противоречие вызвано именно тем, что части первоначального неравенства не были неотрицательными.

 

Пример 1

Равносильны ли неравенства

Показать решение

Пример 2

Равносильны ли неравенства и

Показать решение


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

Главная   Онлайн учебники   База репетиторов России   Тренажеры по математике   Подготовка к ЕГЭ 2017 онлайн

Установить цифровое телевидение
отличные мастера! Установим, настроим, все расскажем, дадим гарантию
slojno.net
Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.