Главная   Онлайн учебники   База репетиторов России   Товары для школы   Подготовка к ЕГЭ онлайн




Глава 1. Арифметика

1.2.

Назад Вперед
Назад Вперед

1.2.1.

Можно еще больше расширить числовое множество – так, чтобы операция деления над натуральными числами была выполнима всегда. Для этого введем понятие дроби.

 

Обыкновенной дробью называется число вида где m и n – натуральные числа. Число m называется числителем этой дроби, а число n – её знаменателем.

Если n = 1, то дробь имеет вид и её часто записывают просто m. Отсюда, в частности, следует, что любое натуральное число представимо в виде обыкновенной дроби со знаменателем 1.

 

Две дроби и называются равными, если

Например, так как Из этого определения следует, что дробь равна любой дроби вида где m – натуральное число. В самом деле, так как то   Итак, мы готовы сформулировать следующее правило.

Основное свойство дроби

Если числитель и знаменатель данной дроби умножить или разделить на одно и то же число, неравное нулю, то получится дробь, равная данной.

С помощью основного свойства дроби можно заменить данную дробь другой дробью, равной данной, но с меньшими числителем и знаменателем. Такая замена называется сокращением дроби. Например, (здесь числитель и знаменатель разделили сначала на 2, а потом ещё на 2). Сокращение дроби можно провести тогда и только тогда, когда её числитель и знаменатель не являются взаимно простыми числами. Если же числитель и знаменатель данной дроби взаимно просты, то дробь сократить нельзя, например, – несократимая дробь.

Модель 1.5. Сокращение обыкновенных дробей

 

 

Обыкновенная дробь называется правильной, если её числитель меньше её знаменателя, то есть m < n. Обыкновенная дробь называется неправильной, если её числитель больше её знаменателя, то есть m > n.

Справедливо следующее утверждение (его мы докажем ниже):

Всякую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби.

 

Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, Чтобы сравнить две дроби с разными числителями и знаменателями, нужно преобразовать обе дроби так, чтобы их знаменатели стали одинаковыми. Такое преобразование называется приведением дробей к общему знаменателю.

Модель 1.6. Сравнение обыкновенных дробей
Пусть, например, даны две дроби  и  Умножим числитель и знаменатель первой дроби на 7, получим Умножим числитель и знаменатель второй дроби на 4, получим Итак, две дроби и приведены к общему знаменателю:

Теперь знаменатели этих дробей одинаковы, значит, Следовательно, Ясно, что две дроби можно привести не к единственному общему знаменателю. Так, в нашем примере дроби  и  можно привести к знаменателю 56. В самом деле:
Понятно, что эти две дроби можно привести к любому знаменателю, делящемуся одновременно на 4 и 7. Однако обычно стараются привести дроби к наименьшему общему знаменателю, который равен наименьшему общему кратному знаменателей двух данных дробей.

Пример 1

Привести дроби к наименьшему общему знаменателю:  и 

Решение

Найдём сперва наименьшее общее кратное чисел 15 и 20. НОК (15, 20) = 60.

Так как 60 : 15 = 4, то числитель и знаменатель дроби нужно умножить на 4: Поскольку 60 : 20 = 3, то числитель и знаменатель второй дроби нужно умножить на 3: Итак, дроби приведены к общему знаменателю:
Ответ. 


В рассмотренном примере числа 4 и 3 называют дополнительными множителями для первой и второй дроби соответственно.

 

Теперь мы можем определить арифметические действия с дробями.

Сложение. Если знаменатели дробей одинаковы, то чтобы сложить эти дроби, нужно сложить их числители; знаменатель остаётся прежним, то есть
Если знаменатели данных дробей разные, то дроби нужно сначала привести к общему знаменателю, а потом поступить, как описано выше.

Вычитание. Если две дроби имеют одинаковые знаменатели, то
Если знаменатели данных дробей различны, то сперва приводят дроби к общему знаменателю, а потом вычитают их по вышеприведённой формуле.

Модель 1.7. Сложение и вычитание обыкновенных дробей

Умножение. Произведение двух дробей равно дроби, числитель которой равен произведению числителей данных дробей, а знаменатель равен произведению их знаменателей, то есть
Например,

Деление. Деление дробей осуществляют следующим образом:
Например,

В случае умножения и деления смешанных чисел всегда удобно переходить к неправильным дробям.

Модель 1.8. Умножение и деление обыкновенных дробей
Пример 2

Сложить две дроби и Ответ представить в виде неправильной дроби.

Показать решение

Пример 3

Сложить две дроби и Ответ представить в виде неправильной дроби.

Показать решение

Теперь можно показать, что любую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби (или в виде натурального числа, если дробь такова, что число m кратно n, например, ).

Пример 4

Представить неправильную дробь в виде суммы натурального числа и правильной дроби: 1) 2)

Показать решение

Всякую неправильную дробь можно представить в виде смешанного числа (или в виде натурального числа). Понятно также, что верно и обратное: всякое смешанное число может быть представлено в виде неправильной дроби. Например,

Пример 5

Выполнить действия.

Показать решение


Назад Вперед
Наверх

Включить/Выключить фоновую музыкуВключить/Выключить звуки событий

Главная   Онлайн учебники   База репетиторов России   Товары для школы   Подготовка к ЕГЭ онлайн

    Смотрите также: Математика, Аннглийский язык, Химия, Биология, Физика, География, Астрономия.
А также: online подготовка к ЕГЭ на College.ru, библиотека ЭОРов и обучающие программы на Multiring.ru.
ПоискОткрытый Колледж
Сзао москвы детская стоматология
tschelkunchik.ru